侧边栏壁纸
博主头像
lukeewin的博客博主等级

行动起来,活在当下

  • 累计撰写 10 篇文章
  • 累计创建 1 个标签
  • 累计收到 0 条评论

目 录CONTENT

文章目录

如何把huggingface格式的whisper模型转为openai格式

Administrator
2024-09-13 / 0 评论 / 0 点赞 / 6 阅读 / 7388 字 / 正在检测是否收录...

1. 摘要

openai目前提供的模型有tiny,tiny.en,base,base.en,small,small.en,medium,medium.en,large-v1,large-v2,large-v3共11种,其中en结尾的是英语模型,由于whisper模型的微调开源的,在huggingface中可以找到各种微调后的模型,比如针对识别泰语优化的模型,我们可以使用huggingface格式的模型来使用whisper进行语音识别,那如果我想要在原先已经写好的基于openai格式的whisper模型进行语音识别,那么我们就需要想办法把huggingface格式的whisper模型转为openai格式,这也是本篇文章要讲的内容。

2. convert hf to openai

首先我们需要安装两个python依赖

pip install openai-whisper transformers -i https://pypi.tuna.tsinghua.edu.cn/simple

然后我们需要到huggingface中找一个需要转换的whisper模型,这里我找的是使用泰语微调好的large-v3模型

复制下面的代码到你电脑中,并命名为convert_hf_to_openai.py

import argparse

import torch
from torch import nn

from transformers import WhisperConfig, WhisperForConditionalGeneration


# Create the reverse mapping adapting it from the original `WHISPER_MAPPING` in
# the `convert_openai_to_hf.py` script:
REVERSE_WHISPER_MAPPING = {
    "layers": "blocks",
    "fc1": "mlp.0",
    "fc2": "mlp.2",
    "final_layer_norm": "mlp_ln",
    ".self_attn.q_proj": ".attn.query",
    ".self_attn.k_proj": ".attn.key",
    ".self_attn.v_proj": ".attn.value",
    ".self_attn_layer_norm": ".attn_ln",
    ".self_attn.out_proj": ".attn.out",
    ".encoder_attn.q_proj": ".cross_attn.query",
    ".encoder_attn.k_proj": ".cross_attn.key",
    ".encoder_attn.v_proj": ".cross_attn.value",
    ".encoder_attn_layer_norm": ".cross_attn_ln",
    ".encoder_attn.out_proj": ".cross_attn.out",
    "decoder.layer_norm.": "decoder.ln.",
    "encoder.layer_norm.": "encoder.ln_post.",
    "embed_tokens": "token_embedding",
    "encoder.embed_positions.weight": "encoder.positional_embedding",
    "decoder.embed_positions.weight": "decoder.positional_embedding",
}


def reverse_rename_keys(s_dict: dict) -> dict:
    """Renames the keys back from Hugging Face to OpenAI Whisper format.

    By using this function on an HF model's state_dict, we should get the names in the format expected by Whisper.

    Args:
        s_dict (`dict`): A dictionary with keys in Hugging Face format.

    Returns:
        `dict`: The same dictionary but in OpenAI Whisper format.
    """
    keys = list(s_dict.keys())
    for orig_key in keys:
        new_key = orig_key
        for key_r, value_r in REVERSE_WHISPER_MAPPING.items():
            if key_r in orig_key:
                new_key = new_key.replace(key_r, value_r)

        # print(f"{orig_key} -> {new_key}")

        s_dict[new_key] = s_dict.pop(orig_key)
    return s_dict


def make_emb_from_linear(linear: nn.Linear) -> nn.Embedding:
    """Converts a linear layer's weights into an embedding layer.

    The linear layer's `in_features` dimension corresponds to the vocabulary size and its `out_features` dimension
    corresponds to the embedding size.

    Args:
        linear (`nn.Linear`): The linear layer to be converted.

    Returns:
        `nn.Embedding`:
            An embedding layer with weights set to those of the input linear layer.

    """
    vocab_size, emb_size = linear.weight.data.shape
    emb_layer = nn.Embedding(vocab_size, emb_size, _weight=linear.weight.data)
    return emb_layer


def extract_dims_from_hf(config: WhisperConfig) -> dict:
    """Extracts necessary dimensions from Hugging Face's WhisperConfig.

    Extracts necessary dimensions and related configuration data from the Hugging Face model and then restructure it
    for the OpenAI Whisper format.

    Args:
        config (`WhisperConfig`): Configuration of the Hugging Face's model.

    Returns:
        `dict`: The `dims` of the OpenAI Whisper model.
    """
    dims = {
        "n_vocab": config.vocab_size,
        "n_mels": config.num_mel_bins,
        "n_audio_state": config.d_model,
        "n_text_ctx": config.max_target_positions,
        "n_audio_layer": config.encoder_layers,
        "n_audio_head": config.encoder_attention_heads,
        "n_text_layer": config.decoder_layers,
        "n_text_head": config.decoder_attention_heads,
        "n_text_state": config.d_model,
        "n_audio_ctx": config.max_source_positions,
    }
    return dims


def convert_tfms_to_openai_whisper(hf_model_path: str, whisper_dump_path: str):
    """Converts a Whisper model from the Hugging Face to the OpenAI format.

    Takes in the path to a Hugging Face Whisper model, extracts its state_dict, renames keys as needed, and then saves
    the model OpenAI's format.

    Args:
        hf_model_path (`str`):
            Path to the pretrained Whisper model in Hugging Face format.
        whisper_dump_path (`str`):
            Destination path where the converted model in Whisper/OpenAI format will be saved.

    Returns:
        `None`
    """
    print("HF model path:", hf_model_path)
    print("OpenAI model path:", whisper_dump_path)

    # Load the HF model and its state_dict
    model = WhisperForConditionalGeneration.from_pretrained(hf_model_path)
    state_dict = model.state_dict()

    # Use a reverse mapping to rename state_dict keys
    state_dict = reverse_rename_keys(state_dict)

    # Extract configurations and other necessary metadata
    dims = extract_dims_from_hf(model.config)

    # Remove the proj_out weights from state dictionary
    del state_dict["proj_out.weight"]

    # Construct the Whisper checkpoint structure
    state_dict = {k.replace("model.", "", 1): v for k, v in state_dict.items()}
    whisper_checkpoint = {"dims": dims, "model_state_dict": state_dict}

    # Save in Whisper's format
    torch.save(whisper_checkpoint, whisper_dump_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--checkpoint",
        type=str,
        help="Path of name of the Hugging Face checkpoint.",  # noqa: E501
    )
    parser.add_argument(
        "--whisper_dump_path",
        type=str,
        help="Path to the output Whisper model.",  # noqa: E501
    )
    args = parser.parse_args()

    convert_tfms_to_openai_whisper(args.checkpoint, args.whisper_dump_path)

最后我们可以使用下面两种方式来把huggingface格式的whisper模型转为openai格式

2.1 使用命令行方式

python convert_hf_to_openai.py \
    --checkpoint ./whisper-large-v3-Thai \
    --whisper_dump_path large-v3.th.pt

第一个参数,表示指定从huggingface中下载的模型,第二个参数,表示你要转换成openai格式的模型名称,这里的名称可以自定义,你不一定要命名为large-v3.th.pt

2.2 使用Python代码方式

import whisper
from transformers.models.whisper.convert_hf_to_openai import convert_tfms_to_openai_whisper
convert_tfms_to_openai_whisper("./whisper-large-v3-Thai", "large-v3.th.pt")

第一个参数,表示你要转换的huggingface格式的模型,第二个参数,表示你要转换成openai格式的模型名称

更多内容欢迎访问我的个人技术分享博客

3. 参考文章

[1] 把hf格式的whisper模型转为openai格式

[2] transformers中关于Whisper使用文档

0
  1. 支付宝打赏

    qrcode alipay
  2. 微信打赏

    qrcode weixin

评论区